Санкт-Петербург, В.О. Тучков переулок, 1
+7(921)952-65-24, +7(921)954-64-24,
+7(812)327-09-86

Viber/Whatsapp: +7(921)954-64-24 Бесплатный звонок

Официальный представитель iRay Technology в России Официальный дилер ARKON в России
Главная Статьи Лазерные дальномеры Дальномеры. Принцип лазерной дальнометрии

Дальномеры. Принцип лазерной дальнометрии

Измерение дальности
Способность электромагнитного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так, при импульсном методе дальнометрирования используется следующее соотношение:
L = ct/2, где L - расстояние до обьекта, с - скорость распространения излучения, t - время прохождения импульса до цели и обратно.
Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Ясно, что чем короче импульс, тем лучше.
Задача определения расстояния между дальномером и целью сводится к измерению соответствующего интервала времени между зондирующим сигналом и сигналом, отраженным от цели. Различают три метода измерения дальности в зависимости от того, какой характер модуляции лазерного излучения используется в дальномере: импульсный, фазовый или фазо-импульсный.
Сущность импульсного метода дальнометрирования состоит в том, что к объекту посылают зондирующий импульс, он же запускает временной счетчик в дальномере. Когда отраженный объектом импульс приходит к дальномеру,то он останавливает работу счетчика. По временному интервалу (задержке отраженного импульса) определяется расстояние до объекта.
При фазовом методе дальнометрирования лазерное излучение модулируется по синусоидальному закону с помощью модулятора (электрооптического кристалла, изменяющего свои параметры под воздействием электрического  сигнала). Обычно используют синусоидальный сигнал с частотой 10...150 МГц (измерительная частота). Отраженное излучение попадает в приемную оптику и фотоприемник, где выделяется модулирующий сигнал. В зависимости от дальности до объекта изменяется фаза отраженного сигнала относительно фазы сигнала в модуляторе. Измеряя разность фаз, определяют расстояние до объекта. 
Использование лазерных дальномеров в военных целях
Лазерная дальнометрия является одной из первых областей практического применения лазеров в зарубежной военной технике. Первые опыты относятся к 1961г., а сейчас лазерные дальномеры используются в наземной военной техники (артиллерийские, танковые), и в авиации (дальномеры, высотомеры, целеуказатели), и на флоте. Эта техника прошла боевые испытания во Вьетнаме и на Ближнем Востоке. В настоящее время ряд дальномеров принят в армиях ряда стран.
Первый лазерный дальномер XM-23 прошел испытание во Вьетнаме и был принят на вооружение в армии США. Он был рассчитан на использование передовых наблюдательных пунктах сухопутных войск. Источником излучения в нем являлся лазер с выходной мощностью 2.5Вт и длительностью импульса 30нс. В конструкции дальномера широко использовались интегральные схемы. Излучатель, приемник и оптические элементы смонтированы в моноблоке, который имеет шкалы точного отсчета азимута и угла места цели. Питание дальномера осуществлялось от батареи никелево-кадмиевых аккумуляторов напряжением 24В, обеспечивающий 100 измерений дальности без подзарядки.
Один из первых серийных моделей - шведский дальномер, предназначенный для использования в системах управления бортовой корабельной и береговой артиллерии. Конструкция дальномера отличалось особой прочностью, что позволяло применять его в сложных условиях. Дальномер можно было сопрягать при необходимости с усилителем изображения или телевизионным визиром. Режимом работы дальномера предусматривалось либо измерения через каждые 2с в течение 20с, либо через каждые 4 с в течение длительного времени.
С начала 70-х годов на зарубежных танках устанавливаются лазерные дальномеры. Установка лазерных дальномеров на танки сразу заинтересовала зарубежных разработчиков вооружения. Это объясняется тем, что на танке можно ввести дальномер в систему управления огнем танка, чем повысить его боевые качества. По сравнению с оптическими они имеют ряд преимуществ: высокое быстродействие, автоматизированный процесс ввода измеренной дальности в прицельные устройства, высокую точность измерения, малые размеры, вес и т. д. Для этого в США был разработан дальномер AN/VVS-1 для танка М60А. Он не отличался по схеме от лазерного артиллерийского дальномера на рубине, однако помимо выдачи данных о дальности на цифровое табло имел устройство, обеспечивающее ввод дальности в счетно-решающее устройство системы управления огнем танка. При этом измерение дальности могло производиться как наводчиком пушки так и командиром танка. Режим работы дальномера - 15 измерений в минуту в течение одного часа.
Лазерные дальномеры, установленные на современных танках, позволяют измерять дальность до цели в пределах от 200 м до 8 000 м (на американских и французских танках) и от 200 до 10 000 м (на английских и западногерманских танках) с точностью до 10 м. Большинство активных элементов лазерных дальномеров, устанавливаемых в настоящее время на танках и БМП западного производства, созданы на основе кристалла граната с примесью неодима (активный элемент - кристалл иттриево-алюминиевого граната Y3A15O3, в который в качестве активных центров введены ионы неодима Ш3+). Эти лазеры генерируют излучение на длине волны 1,06 мкм. Имеются также лазерные дальномеры в которых активным элементом служит кристалл розового рубина. Здесь основой является кристалл окиси алюминия А12О3, а активными элементами ионы хрома Сг3*. Лазеры на рубине генерируют излучение на длине волны 0,69 мкм.
 В последнее время на зарубежных боевых машинах начали применяться лазерные дальномеры на углекислом газе. В СО2-лазере в газоразрядной трубке находится смесь, состоящая из углекислого газа (СО2), молекулярного азота (N,) и различных небольших добавок в виде гелия, паров воды и т. д. Активные центры - молекулы СО2. Преимущество лазера на двуокиси углерода заключается в том, что его излучение (длина волны 10,6 мкм) относительно безопасно для зрения и обеспечивает лучшее проникновение через дым и туман. Кроме того, лазер постоянного излучения, работающий на этой длине волны, может использоваться для подсветки цели при работе с тепловизионным прицелом.
  Бурное развитие микроэлектроники обеспечило уменьшение массо-габаритных показатели лазерных дальномеров, что позволило создать портативные дальномеры. Весьма удачным оказался норвежский лазерный дальномер LP-4. Он имел в качестве модулятора добротности оптико- механический затвор. Приемная часть дальномера является одновременно визиром оператора. Диаметр оптической системы составляет 70 мм. Приемником служит портативный фотодиод. Счетчик снабжен схемой стробирования по дальности, действующий по установке оператора от 200 до 3000 м. В схеме оптического визира перед окуляром помещен защитный фильтр для предохранения глаза от воздействия своего лазера при приеме отраженного импульса. Излучатель и приемник смонтированы в одном корпусе. Угол места цели определяется до ~25 градусов. Аккумулятор обеспечивал 150 измерений дальности без подзарядки, его масса всего 1кг. Дальномер был закуплен Канадой, Швецией, Данией, Италией, Австралией.
Портативные лазерные дальномеры были разработаны для пехотных подразделений и передовых артиллерийских наблюдателей. Один из таких дальномеров выполнен в виде бинокля. Источник излучения и приемник смонтированы в общем корпусе с монокулярным оптическим визиром шестикратного увеличения, в поле зрения которого имеется световое табло из светодиодов, хорошо различимых как ночью, так и днем. В лазере в качестве источника излучения используется алюминиево-иттриевый гранат, с модулятором добротности на ниобате лития. Это обеспечивает пиковую мощность в 1.5 МВт. В приемной части используется сдвоенный лавинный фотодетектор с широкополосным малошумящим усилителем, что позволяет детектировать короткие импульсы с малой мощностью. Ложные сигналы, отраженные от близлежащих предметов исключаются с помощью схемы стробирования по дальности. Источник питания - малогабаритная аккумуляторная батарея, обеспечивающая 250 измерений без подзарядки. Электронные блоки дальномера выполнены на интегральных схемах, что позволило довести массу дальномера вместе с источником питания до 2кг.
Следующий этап военного применения лазерных дальномеров - их интеграция с индивидуальным стрелковым оружием пехотинца. 
Примеров может служить штурмовая винтовка F2000 (Бельгия). Вместо прицела на F2000 может устанавливаться специальный модуль управления огнем, включающий в себя лазерный дальномер и баллистический вычислитель. Основываясь на данных о дальности до цели, вычислитель выставляет прицельную марку прицела как для стрельбы из самого автомата, так и из подствольного гранатомета (если он установлен).  
Американская система OICW (Objective Individual Combat Weapon - объективное индивидуальное боевое оружие) является попыткой резко повысить эффективность вооружения пехотинца. В настоящее время разработка находится на стадии создания прототипов. Начало производства планируется на 2008 год, поступление на вооружение - на 2009 год. По текущим планам, на каждое отделение пехоты будет приходится по 4 OICW.  OICW представляет собой модульную конструкцию, состоящую из трех основных модулей: модуля "KE" (Kinetic Energy), представляющего собой слегка модернизированную винтовку Хеклер-Кох G36; Модуля "HE" (High Explosive), представляющего из себя самозарядный 20мм гранатомет с магазинным питанием, устанавливаемый сверху на модуль "КЕ" и использующий для стрельбы общий с модулем "КЕ" спусковой крючок; и, наконец, модуль управления огнем, включающий в себя дневной/ночной телевизионный прицелы, лазерный дальномер и баллистический вычислитель, который автоматически выставляет в объективе прицельную марку в соответствии с дальностью до цели, а также используется для программирования дистанционных взрывателей 20мм гранат. Перед выстрелом по данным с лазерного дальномера взрыватель гранаты программируется на подрыв в воздухе на заданной дальности, чем обеспечивается поражение укрытых целей осколками сверху или сбоку. Определение дальности для дистанционного подрыва осуществляется путем подсчета оборотов, совершенных гранатой в полете